Bibligrafía:
[1] Millimeter Wave Propagation: Spectrum Management Implications, Federal Commun. Commission (FCC), Office Eng. Technol. (OET), New Technol. Develop. Division, Washington, DC, USA, Jul. 1997, p. 26.
[2] Measuring Digital Development, Facts and Figures 2019, Int. Telecommun. Union (ITU), ITU Publications, Geneva, Switzerland, 2019, p. 14.
[3] J. C. Gallagher and M. E. DeVine, Fifth Generation (5G) Telecommunications Technologies: Issues for Congress, document R45485, Congressional Research Service Report, Jan. 2019. [Online]
[4] D. Abecassis, J. Stewart, and C. Nickerson, ‘‘Global Race to 5G—Update,’’ Final Rep. Cellular Telecommun. Internet Assoc. (CTIA), Washington, DC, USA, Tech. Rep. 2015448-103, Apr. 2019, p. 172.
[5] M. Medin and G. Louie, ‘‘The 5G ecosystem: Risks and opportunities for DoD,’’ Defense Innov. Board, Dept. Defense, Washington, DC, USA, Tech. Rep. DIB 5G Study, Apr. 2019, p. 33.
[6] M. Marcus and B. Pattan, ‘‘Millimeter wave propagation: Spectrum management implications,’’ IEEE Microw. Mag., vol. 6, no. 2, pp. 54–62, Jun. 2005.
[7] K. Gritton, C. Ho, and R. Crane, Ka-Band Propagation Model Based on High Resolution Acts Data, document JPL D-30175, NASA-Jet Propulsion Laboratory, Aug. 2004, p. 138.
[8] E. K. Smith, ‘‘Centimeter and millimeter wave attenuation and brightness temperature due to atmospheric oxygen and water vapor,’’ Radio Sci., vol. 17, no. 6, pp. 1455–1464, Nov. 1982, doi: 10.1029/RS017i006p01455.
[9] E. Björnson, L. Sanguinetti, H. Wymeersch, J. Hoydis, and T. L. Marzetta, ‘‘Massive MIMO is a reality–what is next?’’ Digit. Signal Process., vol. 94, pp. 3–20, Nov. 2019, doi: 10.1016/j.dsp.2019.06.007.
[10] 2019 Broadband Deployment Report, Federal Commun. Commission (FCC), Federal Commun. Commission (FCC), FCC 19-44, Washington, DC, USA, May 2019, p. 331.
[11] D. L. Means and K. W. Chan, Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields, Additional Information for Evaluating Compliance With Mobile and Portable
Devices With FCC Limits for Human Exposure to Radiofrequency Emissions, ET Bulletin 65, Supplement C, Federal Commun. Commission (FCC), Office Eng. Technol., Washington, DC, USA, Jun. 2001, p. 57.
[12] R. Saunders, E. van Rongen, and E. van Deventer, WHO Research Agenda for Radiofrequency Fields. Geneva, Switzerland: World Health Organization (WHO), Office of Press and Public Relations, 2010, p. 42.
[13] E. R. Adair and R. C. Petersen, ‘‘Biological effects of radiofrequency/microwave radiation,’’ IEEE Trans. Microw. Theory Techn., vol. 50, no. 3, pp. 953–962, Mar. 2002.
[14] J. M. Osepchuk and R. C. Petersen, ‘‘Historical review of RF exposure standards and the international committee on electromagnetic safety (ICES),’’ Bioelectromagnetics, vol. 24, no. S6, pp. S7–S16, 2003, doi: 10. 1002/bem.10150.
[15] A. Vander Vorst, A. Rosen, and Y. Kotsuka, RF/Microwave Interaction with Biological Tissues. Hoboken, NJ, USA: Wiley, 2006. [16] C. K. Chou, H. Bassen, J. Osepchuk, Q. Balzano, R. Petersen, M. Meltz, R. Cleveland, J. C. Lin, and L. Heynick, ‘‘Radio frequency electromagnetic exposure: Tutorial review on experimental dosimetry,’’ Bioelectromagnetics, vol. 17, no. 3, pp. 195–208, 1996.
[17] A. W. Guy, M. D. Webb, and C. C. Sorensen, ‘‘Determination of power absorption in man exposed to high frequency electromagnetic fields by thermographic measurements on scale models,’’ IEEE Trans. Biomed. Eng., vol. BME-23, no. 5, pp. 361–370, Sep. 1976, doi: 10.1109/tbme.1976.324645.
[18] K. J. Oscar and T. D. Hawkins, ‘‘Microwave alteration of the blood-brain barrier system of rats,’’ Brain Res, vol. 126, no. 2, pp. 281–293, May 1977,doi: 10.1016/0006-8993(77)90726-0.
[19] O. P. Gandhi, ‘‘Dosimetry—The absorption properties of man and experimental animals,’’ Bull. New York Acad. Med., vol. 55, no. 11, pp. 999–1020, Dec. 1979.
[20] W. G. Lotz and R. P. Podgorski, ‘‘Temperature and adrenocortical responses in rhesus monkeys exposed to microwaves,’’ J. Appl. Physiol., vol. 53, no. 6, pp. 1565–1571, Dec. 1982, doi: 10.1152/jappl.1982.53.6.1565.
[21] A. H. Frey, ‘‘Studies of the blood-brain barrier: Preliminary findings and discussion,’’ Radio Sci., vol. 14, no. 6S, pp. 349–350, Nov. 1979, doi: 10.1029/RS014i06Sp00349.
[22] J. G. Burr and J. H. Krupp, ‘‘Real-time measurement of RFR energy distribution in the macaca mulatta head,’’ Bioelectromagnetics, vol. 1, no. 1, pp. 21–34, 1980, doi: 10.1002/bem.2250010103.
[23] J. R. Thomas, J. Schrot, and R. A. Banvard, ‘‘Comparative effects of pulsed and continuous-wave 2.8-GHz microwaves on temporally defined behavior,’’ Bioelectromagnetics, vol. 3, no. 2, pp. 227–235, 1982, doi: 10.1002/ bem.2250030207.
[24] R. G. Olsen, ‘‘Far-field dosimetric measurements in a full-sized man model at 2.0 GHz,’’ Bioelectromagnetics, vol. 3, no. 4, pp. 433–441, 1982, doi: 10.1002/bem.2250030406.
[25] W. G. Lotz, ‘‘Hyperthermia in radiofrequency-exposed rhesus monkeys: A comparison of frequency and orientation effects,’’ Radiat. Res., vol. 102, no. 1, pp. 59–70, Apr. 1985.
[26] M. R. Frei and J. R. Jauchem, ‘‘Thermoregulatory responses of rats exposed to 9.3-GHz microwaves—A comparison of E-orientation and H-orientation,’’ Physiol. Chem. Phys. Med., vol. 24, no. 1, pp. 1–10, 1992.
[27] J. A. D’Andrea, A. Thomas, and D. J. Hatcher, ‘‘Rhesus monkey behavior during exposure to high-peak-power 5.62-GHz microwave pulses,’’ Bioelectromagnetics, vol. 15, no. 2, pp. 76–163, 1994, doi: 10.1002/bem.2250150207.
[28] E. R. Adair, B. L. Cobb, K. S. Mylacraine, and S. A. Kelleher, ‘‘Human exposure at two radio frequencies (450 and 2450 MHz): Similarities and differences in physiological response,’’ Bioelectromagnetics, vol. 20, no. S4, pp. 12–20, 1999.
[29] K. L. Ryan, J. A. D’Andrea, J. R. Jauchem, and P. A. Mason, ‘‘Radiofrequency radiation of millimeter wave length: Potential occupational safety issues relating to surface heating,’’ Health Phys., vol. 78, no. 2, pp. 170–181, Feb. 2000, doi: 10.1097/00004032-200002000-00006.
[30] J. M. Ziriax, K. I. Smith, D. A. Nelson, K. L. Ryan, P. Gajsek, J. A. D’Andrea, T. J. Walters, W. D. Hurt, and P. A. Mason, ‘‘Effects of frequency, permittivity, and voxel size on predicted specific absorption rate values in biological tissue during electromagnetic-field exposure,’’ IEEE Trans. Microw. Theory Techn., vol. 48, no. 11, pp. 2050–2058, Nov. 2000.
[31] E. R. Adair, K. S. Mylacraine, and B. L. Cobb, ‘‘Partial-body exposure of human volunteers to 2450 MHz pulsed or CW fields provokes similar thermoregulatory responses,’’ Bioelectromagnetics, vol. 22, no. 4, pp. 246–259, May 2001, doi: 10.1002/bem.47.
[32] D. A. Nelson, T. J. Walters, K. L. Ryan, K. B. Emerton, W. D. Hurt, M. J. Ziriax, L. R. Johnson, and P. A. Mason, ‘‘Inter-species extrapolation of skin heating resulting from millimeter wave irradiation: Modeling and experimental results,’’ Health Phys., vol. 84, no. 5, pp. 608–615, May 2003, doi: 10.1097/00004032-200305000-00006.
[33] L. G. Salford, H. Nittby, A. Brun, G. Grafström, L. Malmgren, M. Sommarin, J. Eberhardt, B. Widegren, and B. R. R. Persson, ‘‘The mammalian brain in the electromagnetic fields designed by man with special reference to blood-brain barrier function, neuronal damage and possible physical mechanisms,’’ Prog. Theor. Phys. Suppl., vol. 173, pp. 283–309, Jan. 2008[34] M. Blank and R. Goodman, ‘‘Electromagnetic fields stress living cells,’’
Pathophysiology, vol. 16, nos. 2–3, pp. 71–78, Aug. 2009, doi: 10.1016/j.pathophys.2009.01.006.
[35] J. L. Phillips, N. P. Singh, and H. Lai, ‘‘Electromagnetic fields and DNA damage,’’ Pathophysiology, vol. 16, nos. 2–3, pp. 79–88, Aug. 2009, doi: 10.1016/j.pathophys.2008.11.005.
[36] S. Roggeveen, J. van Os, and R. Lousberg, ‘‘Does the brain detect 3G mobile phone radiation peaks? An explorative in-depth analysis of an experimental study,’’ PLoS ONE, vol. 10, no. 5, May 2015, Art. no. e0125390, doi: 10.1371/journal.pone.0125390.
[37] A. Şahin, A. Aslan, O. BaŞ, A. Ikinci, C. Özyılmaz, O. Fikret Sönmez, S. ˙olako§lu, and E. Odacı, ‘‘Deleterious impacts of a 900-MHz electromagnetic field on hippocampal pyramidal neurons of 8-week-old sprague Dawley male rats,’’ Brain Res., vol. 1624, pp. 232–238, Oct. 2015, doi: 10. 1016/j.brainres.2015.07.042.
[38] Z. Sienkiewicz and E. van Rongen, ‘‘Can low-level exposure to radiofrequency fields effect cognitive behaviour in laboratory animals? A systematic review of the literature related to spatial learning and place memory,’’
Int. J. Environ. Res. Public Health, vol. 16, no. 9, p. 1607, May 2019, doi: 10.3390/ijerph16091607.
[39] I. Commission on Non-Ionizing Radiation Protection (ICNIRP)1,99797.aspx.
[40] IEEE Standard for Safety Levels With Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz, IEEE Standard C95.1-2019 (Revision of IEEE Standard C95.1-2005/ Incorporates IEEE Standard C95.1-2019/Cor 1-2019), Oct. 2019, pp. 1–312, doi: 10.1109/IEEESTD.2019.8859679.
[41] IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head From Wireless Communications Devices: Measurement Techniques, IEEE Standard 1528-2013 (Revision IEEE Standard 1528-2003), Sep. 2013, pp. 1–246, doi: 10.1109/IEEESTD.2013.6589093.
[42] IEEE Recommended Practice for Measurements and Computations of Radio Frequency Electromagnetic Fields With Respect to Human Exposure to Such Fields, 100 kHz-300 GHz, IEEE Standard C95.3-2002 (Revision
IEEE Standard C95.3-1991), 2002, pp. 1–126.
[43] D. Belpomme, L. Hardell, I. Belyaev, E. Burgio, and D. O. Carpenter, ‘‘Thermal and non-thermal health effects of low intensity non-ionizing radiation: An international perspective,’’ Environ. Pollut., vol. 242, pp. 643–658, Nov. 2018, doi: 10.1016/j.envpol.2018.07.019.
[44] F. S. Barnes, ‘‘Mechanisms for electric and magnetic fields effects on biological cells,’’ IEEE Trans. Magn., vol. 41, no. 11, pp. 4219–4224, Nov. 2005, doi: 10.1109/Tmag.2005.855480.
[45] D. H. Gultekin and J. C. Gore, ‘‘Temperature dependence of nuclear magnetization and relaxation,’’ J. Magn. Reson., vol. 172, no. 1, pp. 133–141, Jan. 2005, doi: 10.1016/j.jmr.2004.09.007.
[46] N. D. Volkow, D. Tomasi, G.-J. Wang, P. Vaska, J. S. Fowler, F. Telang, D. Alexoff, J. Logan, and C. Wong, ‘‘Effects of cell phone radiofrequency signal exposure on brain glucose metabolism,’’ J. Amer. Med. Assoc., vol. 305, no. 8, p. 808–813, Feb. 2011, doi: 10.1001/jama.2011.186.
[47] D. H. Gultekin and L. Moeller, ‘‘NMR imaging of cell phone radiation absorption in brain tissue,’’ Proc. Nat. Acad. Sci. USA, vol. 110, no. 1, pp. 58–63, Jan. 2013, doi: 10.1073/pnas.1205598109.
[48] M. W. Dewhirst, B. L. Viglianti, M. Lora-Michiels, M. Hanson, and P. J. Hoopes, ‘‘Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia,’’ Int. J. Hyperthermia, vol. 19, no. 3, pp. 267–294, Jan. 2003, doi: 10.1080/0265673031000119006.
[49] G. C. van Rhoon, T. Samaras, P. S. Yarmolenko, M. W. Dewhirst, E. Neufeld, and N. Kuster, ‘‘CEM43◦C thermal dose thresholds: A potential guide for magnetic resonance radiofrequency exposure levels?’’ Eur. Radiol., vol. 23, no. 8, pp. 2215–2227, Aug. 2013, doi: 10.1007/s00330-013-2825-y.
[50] D. H. Gultekin and J. C. Gore, ‘‘Measurement of specific heat and specific absorption rate by nuclear magnetic resonance,’’ Thermochimica Acta, vols. 503–504, pp. 100–107, May 2010, doi: 10.1016/j.tca.2010.03.015.
[51] D. H. Gultekin and J. C. Gore, ‘‘Simultaneous measurements of thermal conductivity, thermal diffusivity and specific heat by nuclear magnetic resonance imaging,’’ Thermochimica Acta, vol. 519, nos. 1–2, pp. 96–102, May 2011, doi: 10.1016/j.tca.2011.02.041.[52] L. Alon, D. K. Sodickson, and C. M. Deniz, ‘‘Heat equation inversion framework for average SAR calculation from magnetic resonance thermal imaging,’’ Bioelectromagnetics, vol. 37, o. 7, pp. 493–503, Oct. 2016, doi: 10.1002/bem.21996.
[53] K. R. Foster, J. L. Schepps, R. D. Stoy, and H. P. Schwan, ‘‘Dielectric properties of brain tissue between 0.01 and 10 GHz,’’ Phys. Med. Biol., vol. 24, no. 6, pp. 1177–1187, Nov. 1979, doi: 10.1088/0031-9155/24/6/008.
[54] C. Gabriel, ‘‘Compilation of the dielectric properties of body tissues at RF and microwave frequencies,’’ Armstrong Lab., Occupational Environ. Health Directorate, Radiofrequency Radiat. Division, Brooks Air Force Base, San Antonio, TX, USA, Tech. Rep. AL/OE-TR-1996-0037, 1996.
[55] M. C. Steel and R. J. Sheppard, ‘‘Dielectric properties of mammalian brain tissue between 1 and 18 GHz,’’ Phys. Med. Biol., vol. 30, no. 7, pp. 621–630, Jul. 1985, doi: 10.1088/0031-9155/30/7/001.
[56] G. Schmid, G. Neubauer, and P. R. Mazal, ‘‘Dielectric properties of human brain tissue measured less than 10 h postmortem at frequencies from 800 to 2450 MHz,’’ Bioelectromagnetics, vol. 24, no. 6, pp. 423–430, Sep. 003, doi: 10.1002/bem.10123.
[57] N. Kuster, V. Santomaa, and A. Drossos, ‘‘The dependence of electromagnetic energy absorption upon human head tissue composition in the frequency range of 300-3000 MHz,’’ IEEE Trans. Microw. Theory Techn., vol. 48, no. 11, pp. 1988–1995, Nov. 2000, doi: 10.1109/22.884187.
[58] A. Hirata, S.-I. Matsuyama, and T. Shiozawa, ‘‘Temperature rises in the human eye exposed to EM waves in the frequency range 0.6-6 GHz,’’ IEEE Trans. Electromagn. Compat., vol. 42, no. 4, pp. 386–393, 4th Quart., 2000, doi: 10.1109/15.902308.
[59] A. Hirata and O. Fujiwara, ‘‘The correlation between mass-averaged SAR and temperature elevation in the human head model exposed to RF nearfields from 1 to 6 GHz,’’ Phys. Med. Biol., vol. 54, no. 23, pp. 7227–7238,
Dec. 2009, doi: 10.1088/0031-9155/54/23/013.
[60] M. C. Ziskin, S. I. Alekseev, K. R. Foster, and Q. Balzano, ‘‘Tissue models for RF exposure evaluation at frequencies above 6 GHz,’’ Bioelectromagnetics, vol. 39, no. 3, pp. 173–189, Apr. 2018, doi: 10.1002/bem.22110.
[61] R. Morimoto, A. Hirata, I. Laakso, M. C. Ziskin, and K. R. Foster, ‘‘Time constants for temperature elevation in human models exposed to dipole antennas and beams in the frequency range from 1 to 30 GHz,’’ Phys. Med. Biol., vol. 62, no. 5, pp. 1676–1699, Mar. 2017, doi: 10.1088/1361-6560/aa5251.
[62] K. R. Foster, M. C. Ziskin, Q. Balzano, and A. Hirata, ‘‘Thermal analysis of averaging times in radio-frequency exposure limits above 1 GHz,’’ IEEE Access, vol. 6, pp. 74536–74546, 2018, doi: 10. 1109/ACCESS.2018.2883175.
[63] D. Funahashi, A. Hirata, S. Kodera, and K. R. Foster, ‘‘Area-averaged transmitted power density at skin surface as metric to estimate surface temperature elevation,’’ IEEE Access, vol. 6, pp. 77665–77674, 2018, doi: 10. 1109/ACCESS.2018.2883733.
[64] S. Kodera, A. Hirata, D. Funahashi, S. Watanabe, K. Jokela, and R. J. Croft, ‘‘Temperature rise for brief radio-frequency exposure below 6 GHz,’’ IEEE Access, vol. 6, pp. 65737–65746, 2018, doi: 10.1109/ ACCESS.2018.2878149.
[65] T. Nakae, D. Funahashi, J. Higashiyama, T. Onishi, and A. Hirata, ‘‘Skin temperature elevation for incident power densities from dipole arrays at 28 GHz,’’ IEEE Access, vol. 8, pp. 26863–26871, 2020, doi: 10. 1109/ACCESS.2020.2970219.
[66] R. Morimoto, I. Laakso, V. De Santis, and A. Hirata, ‘‘Relationship between peak spatial-averaged specific absorption rate and peak temperature elevation in human head in frequency range of 1–30 GHz,’’ Phys. Med. Biol., vol. 61, no. 14, pp. 5406–5425, Jul. 2016, doi: 10.1088/0031-9155/61/14/5406.
[67] K. Sasaki, M. Mizuno, K. Wake, and S. Watanabe, ‘‘Monte Carlo simulations of skin exposure to electromagnetic field from 10 GHz to 1 THz,’’ Phys. Med. Biol., vol. 62, no. 17, pp. 6993–7010, Aug. 2017, doi: 10. 1088/1361-6560/aa81fc.
[68] S. Kodera, J. Gomez-Tames, and A. Hirata, ‘‘Temperature elevation in the human brain and skin with thermoregulation during exposure to RF energy,’’ Biomed. Eng. OnLine, vol. 17, no. 1, Dec. 2018, doi: 10. 1186/s12938-017-0432-x.
[69] D. H. Gultekin and J. C. Gore, ‘‘Measurement of heat transfer coefficients by nuclear magnetic resonance,’’ Magn. Reson. Imag., vol. 26, no. 9, pp. 1323–1328, Nov. 2008, doi: 10.1016/j.mri.2008.04.006.
[70] D. H. Gultekin and J. C. Gore, ‘‘Measurement of thermal diffusivity by magnetic resonance imaging,’’ Magn. Reson. Imag., vol. 24, no. 9, pp. 1203–1207, Nov. 2006, doi: 10.1016/j.mri.2006.03.014[
71] O. P. Gandhi, ‘‘Frequency and orientation effects on whole animal absorption of electromagnetic waves,’’ IEEE Trans. Biomed. Eng., vol. BME-22, no. 6, pp. 536–542, Nov. 1975, doi: 10.1109/tbme.1975.324479.
[72] N. Kuster, V. B. Torres, N. Nikoloski, M. Frauscher, and W. Kainz, ‘‘Methodology of detailed dosimetry and treatment of uncertainty and variations for in vivo studies,’’ Bioelectromagnetics, vol. 27, no. 5, pp. 378–391, Jul. 006, doi: 10.1002/bem.20219.
[73] N. Kuster and Q. Balzano, ‘‘Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300 MHz,’’ IEEE Trans. Veh. Technol., vol. 41, no. 1, pp. 17–23, Feb. 1992, doi: 10. 1109/25.120141.
[74] R. L. Mcintosh and V. Anderson, ‘‘A comprehensive tissue properties database provided for the thermal assessment of a human at rest,’’ Biophys. Rev. Lett., vol. 5, no. 3, pp. 129–151, Sep. 2010, doi: 10. 1142/S1793048010001184.
[75] P. A. Bottomley and E. R. Andrew, ‘‘RF magnetic field penetration, phase shift and power dissipation in biological tissue: Implications for NMR imaging,’’ Phys. Med. Biol., vol. 23, no. 4, pp. 630–643, Jul. 1978, doi: 10. 1088/0031-9155/23/4/006.
[76] T. Vaughan, L. DelaBarre, C. Snyder, J. Tian, C. Akgun, D. Shrivastava, W. Liu, C. Olson, G. Adriany, J. Strupp, P. Andersen, A. Gopinath, P.-F. van de Moortele, M. Garwood, and K. Ugurbil, ‘‘9.4T human MRI: Preliminary results,’’ Magn. Reson. Med., vol. 56, no. 6, pp. 1274–1282, Dec. 2006, doi: 10.1002/mrm.21073.
[77] P. A. Bottomley, ‘‘Turning up the heat on MRI,’’ J. Amer. College Radiol., vol. 5, no. 7, pp. 853–855, Jul. 2008, doi: 10.1016/j.jacr.2008.04.003.
[78] H. H. Pennes, ‘‘Analysis of tissue and arterial blood temperatures in the resting human forearm,’’ J. Appl. Physiol., vol. 1, no. 2, pp. 93–122,Aug. 1948, doi: 10.1152/jappl.1948.1.2.93.
[79] H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. Oxford, U.K.: Clarendon, 1986, p. 510.
[80] Council Recommendation of 12 July 1999 on the Limitation of Exposure of the General Public to Electromagnetic Fields (0 Hz to 300 GHz), Off. J. Eur. Communities, Council Eur. Union, Brussels, Belgium, Jul. 1999, vol. L 199/59, no. 59