Safety and Tolerability of Anti-Coronavirus Drug Candidates Observed in an Animal Model Further Advances NanoViricides’ SARS-CoV-2 Therapeutics Program
July 8, 2020, 12:15 pm
SHELTON, CT / ACCESSWIRE / July 8, 2020 / NanoViricides, Inc. (NYSE American:NNVC) (the "Company") a leader in the development of highly effective antiviral therapies based on a novel nanomedicines platform, announced today that excellent safety and tolerability of the drug candidates it is developing against SARS-CoV-2 to treat COVID-19 spectrum of diseases was observed in an animal model. The nanoviricides drug candidates tested in this safety/tolerability study have previously shown strong effectiveness against lung infection by a SARS-CoV-2 like coronavirus, namely, hCoV-NL63, in an animal study as previously reported by the Company.
Three different drug candidates at three different dosage levels (low, medium, and high) and vehicle control were administered to separate groups of mice intravenously in the Safety-Tolerability study reported here. Clinical observations and gross post-mortem studies have been completed. The tested drug candidates were safe and well tolerated, thereby clearing the path for further development towards a treatment for SARS-CoV-2 infection that has caused the current COVID-19 pandemic.
Importantly, nanoviricides are designed to act by a novel mechanism of action, trapping the virus particle like the "Venus-fly-trap" flower does for insects. Antibodies, in contrast, only label the virus for other components of the immune system to take care of. It is well known that the immune system is not functioning properly at least in severe COVID-19 patients.
Additionally, it is well known that viruses escape antibody-drugs via mutations. The Company's "nanoviricide" drug candidates, in contrast, are designed to be broad-spectrum, and therefore virus escape by mutations is expected to be unlikely.
In this Safety/Tolerability Study, there were no clinical signs of immune or allergic reactions such as itching, biting, twitching, rough coat, etc. Further, there were no observable changes in any organs including large intestine or colon on post mortem in gross histology. The only reportable changes observed were, in the high dosage groups of two of the three drug candidates tested, associated with the non-absorption of water, in the colon. This is consistent with the clinical observation of very loosened stools in the same groups. In clinical usage, the drug candidates are not anticipated to be administered in such high levels. The objective of this study was to discover the dosage level at which such an effect may occur.
Sixteen mice in each group (8 males, 8 females), were administered one of the three drug candidates at one of the three dose levels, and additionally, one group was administered vehicle control, for seven days by daily tail-vein intravenous infusion in this blinded study with additional evaluations on 8th day. This non-GLP safety/tolerability study was conducted under GLP-like conditions by AR BioSystems, Inc., Odessa, Tampa, FL.